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An attempt is made to explain theoretically two curious phenomena involving 
the motion of the liquid in a spinning, gyrating, liquid-filled gyroscope. One of 
the phenomena is the periodic breakdown of the free-surface wave form of the 
spinning liquid in the gyroscope when it gyrates at angles larger than about 1". 
The other is the resonant amplitude growth rate of the liquid-filled gyroscope at 
these angles, for then the small angle stability theory of Stewartson (1959) fails 
to make the correct predictions. 

The analysis exploits the experimental fact that the axis of rotation of liquid 
in the rotor of a spinning gyrating gyroscope does not remain coincident with the 
axis of rotation of the rotor when the gyroscope gyrates at  amplitudes greater 
than the above-mentioned I". It is shown that this lack of coincidence generates 
Rossby waves and modifies the inertial wave frequencies that would ordinarily 
occur in a right circular cylinder. There is no nonlinear interaction between these 
Rossby and inertial waves; hence the free-surface breakdown remains un- 
explained. However, the modification of the inertial wave frequencies does seem 
to account for the curious amplitude growth rate. 

1. Introduction 
Stewartson (1959) remarked that his liquid-filled top could be made unstable 

at almost any filling ratio by making the motion 'large angle', i.e. by causing 
the axis of the top to  depart significantly from the vertical. While verifying 
a similar phenomenon with a gyroscope partially filled with liquid, we observed 
two additional inkeresting phenomena associated with the 'large angle' motion. 
One was the failure of the axis of the hollow cylindrical core of the liquid t o  
remain coincident with t.he axis of rotation of the right circular cylindrical rotor 
as the latter gyrated through large angles. The other phenomenon was the 
periodic appearance and demise, but only at large angles, of the free-surface 
inertial wave form shown in figure 1. Since the angular motion of a projectile about 
its centre of mass is like that of a gyroscope, these phenomena may have some 
relevance to the stability of spin-stabilized liquid-payload projectiles, for the 
stability of these projectiles at large angles does not conform to the predictions 
of the only available theory, the Stewartson small angle stabilitytheory. Figures 2 
and 3 show how, for a gyroscope, the amplitude amplification rate at small 
angles differs from that at large angles. 
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FIGURE I .  Partially filled, spinning cylinder gyrating through a large angle a. 

Since ‘beat’ waves may arise from the interaction of kwo different inertial wave 
modes, we iniCially conjectured that the free-surface breakdown was a mani- 
festation of such beats. However, no combination of the several resonant inertial 
modes gave a frequency close to that of the periodic breakdown. Furthermore, the 
fact that the free-surface wave form reappeared not only dismissed turbulence 
as a factor, but also implied that the phenomenon was reversible, a property not 
characteristic of instabilities. Hence we conjectured that the periodic breakdown, 
i.e. the periodic degeneration of the inertial wave form, restoring an axisymmetric 
surface, was associated with the presence of some other kind of wave in the 
gyrating rotor. Recalling that Pedlosky & Greenspan (1967) showed that a uni- 
formly rotating liquid in a sliced-off cylinder could support Rossby waves in 
addition to the ordinary inertial waves, we reasoned that Rossby waves should 
also arise in the gyroscope a t  large angles, for the above-mentioned non- 
coincidence of the two spin vectors in effect should cause the liquid to ‘see’ 
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Dimensionless nutationd frequency of the gyrostat, r,,,, 

FIU- 2. Amplitude growth rate vi?. gyroscopic frequency for a 77% fdled gyroscope. 
20 = 7.48 in., 2a = 2.50 in., = 5000 r.p.m. Small amplitude growth rates: 0, 1 cS oil; 
0, 13 CS oil. Large amplitude growth rates: 0,  1 CS oil; ., 13 CS ofi. 
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FIUURE 3. Amplitude growth rate va. gyroscopio frequency for a completely filled gyro- 
scope. 20 = 7,817 in., 2a = 2.48 in., C2 = 5000 r.p.m., 1 cS oil. 0, small amplitude 
growth rate; 0,  large amplitude growth rate. 

a sliced-off cylinder. In addition, the ordinary inertial waves should still appear, 
although in some modified form. Hence, in the analysis, we searched for Rossby 
modes and modified inertial modes with the hope that their interaction, or merely 
their presence, would account not only for the periodic breakdown, but also the 
curious amplitude gr0wt.h rate. The latter phenomenon would be explicable if 
the inertial wave frequencies increased with the amplitude of the motion, thus 
requiring the gyroscope to have a higher frequency in order to  effect resonance 
at larger angles, as figures 2 and 3 imply. 
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The serious implications of figures 2 and 3 should be stressed: a spinning 
liquid-carrying vehicle designed to operate far from resonance by use of the 
Stewartson theory may yet experience instability if the amplitude of its mot.ion 
exceeds a degree or so. 

2. Analysis 
We follow rather closely Stewartson’s (1959) analysis of a liquid-filled spinning 

top, Pedlosky & Greenspan’s (1967) analysis of a sliced-off cylinder and Green- 
span’s (1969) analysis of nonlinear interaction of inertial modes. 

In figure 1 we show a rotating, gyrating, partially filled, right circular 
cylinder whose axis makes a ‘large’ angle a with the vertical. Shown also are 
representative inertial wave forms of two ‘opposite’ parts of the free surface of 
the non-aligned hollow central core, whose axis departs from the axis of the 
cylinder by the angle a. At the moment of breakdown, the free surface becomes 
essentially axisymmetric. 

The equations 

To make the analysis tractable, we assume that the angle a remains constant (in 
experiments it does not !). As in figure 1, we take the X ,  Y and 2 axes to be 
fixed relative to the cylinder, which has angular velocity components wx,  wp and 
oz in the X ,  Y and 2 directions respectively, and the x, y and x axes to be fixed 
relative to the ‘bulk’ motion of the fluid, which has angular velocity o with 
components w,, ov and 52 in the x, y and z directions respectively. 

When the gyroscope is gyrating, the Euler equation is 

where gravity has been neglected, q, which satisfies V . q  = 0 in the cavity and 
q.  n = 0 (with n the normal to the surface in the X ,  Y ,  2 frame) at  a boundary, 
is the fluid velocity with respect to the x, y, z frame and 

p’/p = p / p  + $a2b2 - &(w x R) . (O x R). 

Since we are concerned with the appearance of very low frequency (in the 
rotating x, y, z frame) inertial waves, i.e. Rossby waves, all of which will disappear 
when a is zero, we invoke the method of multiple time scales and seek solutions 
of the form 

q(R7t) = Q(R,t)+aQ,(R,7,T,$,...)+a2Q1(R,T7T,$, * * . ) + * * * ,  (2) 

p’(R, t )  = P(R, t )  +otP,(R, 7, T, $, ...) +a2P1(R, 7, T, $, ...) + ..., (3) 

where r=at ,  T=a2t ,  $=a3t ,..., 

Q(R, t )  = Z A,(t) Q,W, P(R, t )  = Z A,(t)P,(R), 
m m 

Q,(R) being an inertial mode which satisfies 

ihQQ,(R) + 252k x Q,(R) = - VP,(R) 

and Q,(R).n = 0 
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on the wetted surface of the cavity. ( k  is a unit vector in the z direction.) We are, 
of course, assuming that the velocity may be represented by a sum of inertial 
and Rossby modes, the Qi being the Rossby modes. 

Now, from (4) we have 

where 

Pm(R) = {AJ,(d~[(2/h,)~- 11)) +BY,(dr[(2/hL) - l]*)}eiecos [d(z+c)] (7) 

and satisfies V2Pm + (2 / i4J2  a2Pm/az2 = 0. In  the expression for P,, 
d = ( 2 j + l ) 4 2 c ,  j = 0, 1, ..., 

2c is the cavity height, A and B are constants, and A, (for a cylindrical annulus 
of liquid of inner and outer radii a and b respectively) is determined from 

[dPJ;(dPa) + ( 2 / a U  Jl(adP)I W W b d P )  + [2/hrnb + (4 - W / b l  Yl(W4) 

- [dPY;(dP) + (21aA-n) Yl(adP)l {dPJ;(bdP) + [’/Amb + (4- W / b I  Jl(bd@)} = 0, 

(8) 
where P = [ ( 2 / A J 2 -  l]* and T is a cylindrical co-ordinate. According to (8), A, 
depends critically upon the value of c/a(2j+ 1) = 77/2ad, where 2 j +  1 is the 
number of half cosine wave forms that can be ‘fitted’ into the height 2c of the 
cylinder. Hence, since this equation assumes that the liquid is spinning about the 
central axis of the cylinder, i.e. a = 0, we attempt to allow for the effect of 
a non-zero value of a on the number of waves by setting d = do + adl +a%?, + . . , , 
where do = ( 2 j  + 1) 7r/2c. Hence 

Q,(R) = Q,(R do + ad1 + - * )  = Q,o(R, do) + aQ,o(R, do)/ado + . . 
and P,(R) = P,,(R, a,) + ad, aP,,(R, ao)/aa, + . . . . 

We non-dimensionalize our equations by setting 

t = t ’ /Q,  V = V’/c, p = p‘/c3, o = aQo’, R = cR’, P = arct2p’/c 

and then dropping primes. Setting o = w e iy t  and 

A,(t) = Amo(t,7,T, ...)+&,I( t ,7,T, ...)+ a2A,2(t,7,T, ...)+... , 
we have from ( 1 )  and (4 )  

+... -iAmoAnro-iaAmoA,,-ia2h~A~2-...)(l+ad 
+2akxQo+2a2kxQl = -V(aP,+a2Pl+. . . )+iyRxweirt  
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At zeroth order in a we have 

I: (aAd/at - iArnoAmo) Q, = iyR x w ei@. (10) 
m 

Now, using the orthogonality properties of the inertial modes, we get 

A,, = am0(7,T, . . . )exp(iAmot)+iyei~t~Rx w .  Q ~ d V l ( i y - i h r n o ) S Q m . Q ~ a v .  

At first order in a, (9) gives 

= - Vpo + C A m 0  Qm x (V x C An0 Qn). ( 1 1) 
m n 

From (1 0) and the orthogonality properties of the inertial modes, we have 

We take the fourth term equal to zero (we shall show later that this allows for 
a kind of geostrophy of the flow) by assuming that Qo satisfies 

2k x Qo = -VPo. (13) 

If we note that AzoAno has an exp [i(Azo + Ano) t]  time dependence, we need not be 
concerned about uniform validity here and can take 

A,, = u,,(T, T, . . .) exp (iAmot), aAmo/a~ = 0. P4),  (15) 

At second order in a, (9) yields 
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2 

FIGWRE 4. Geometrical conditions at the boundaries. 

The contributions from 1 = m and n = m to the first two terms on the right-hand 
side of (18) make the solution not uniformly valid for large times. Hence we take 

A,, = a,,(T,@, ...)exp(ihmot), A,, = a,,(7,T, ... )exp(ih,,t) (1% (20) 
and 

A,, = a,, (@, . . . ) exp ( i h t )  + iy eiyy"f R x w . QL d V [(iy - ih,) I Qmo . Q,,d Y3-1 
+exp{JQ%o.[Qmo~ ( V X  Qo)+Qox ( V X  Q ~ ) l T d V ) [ ~ Q , o . Q ~ , d ~ ] - l .  (21) 

Equation (21) is the result we need to show the frequency-shift effect of the 
interaction between the inertial mode QmO, given in (6), and the assumed Rossby 
mode Q,, for which we now find an explicit expression. 

The vector product of (13) and k yields 

k .Qo=O,  Q , = & k x V P , .  (2% (23) 
The scalar product of (13) and k yields 

aP,laz = 0, 
which, from (23), implies that 

aQ,/& = 0. 

(24) 

(25) 
Hence the low frequency motion is geostrophic, i.e. the motion characterized by 
Q, is columnar. To determine Qo explictly we follow Pedlosky & Greenspan and 



656 W.  E.  Scott 

derive a differential equation for Po by considering the boundary conditions on 
the ends (since Po is independent of z). In  figure 4 we show the geometrical con- 
ditions on the ends (greatly magnified). We have at  the top (x  = e) and the 
bottom ( z  = - c ) ,  respectively, 

2 ((Amo+aA,,+ ...) Qmo+aQo+a2Q1+ ... 
m 

and a 
X { (Anbo + aA, + .. .) (1. +ad, ad, + . . .) Qmo + aQo + a2Q1 + . . . 
m 

(27) 

+raz[(Amo+aAm,+...) a 

x Qmo+aQo+a2Q,+ ... . ( - k - a i , )  = 0. 

The terms of zero order in a give (5). Hence, at  first order in a, 

a 
X - A m 0  Qmo * ir + 0 0 .  k - C A m 1  Qm0.k + r - X Am0 Qm0.k 
m m az m 

a 
m ad0 

[Q,, . i p  - WQmo. k)/azl,=, = [dla(Qm. k)/adol,. 

+I=Amodl-Qmo.k= 0. (28) 

Since Qo . k = 0 from (22) and Qmo . k = 0 from (5), we have 

(29) 
At second order in a we have from (26) 

a - I: A m 1  Qmo * 1- Qo * i, + Q1.k-r- C A d  Q m . 4  
m 

+ -CA d -Q, . ir+zA, ,r ,d ,~Q, .k+XA, ,4-Q, .k]  a a a  a = 0. 

(30) 
[ mO l a 2  ad0 z=c 

From (29) we see that the fist, fifth and ninth terms in this expression cancel. 
Also, from (6), [a(Q,.i,)/az],, = 0, and from (25), the sixth term vanishes. The 
seventh and eighth terms involve products of d,, which we neglect. Hence 

-Qo.i,+[Q1.k]z=e = 0. (31) 

Qo-$+[Qi-kIz=* = 0. (32) 

(33) 

Similarly, from (27), we have 

From (17) we determine Q, by taking the curl, getting 

a(v x Q , ) / ~ T -  2 aQl/az = 0. 
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Since Qo is independent of z, and since curl Qo is in the direction of k, a general 
enough integral of this equation is 

Q1 = & a ( V x  Q o ) / ~ ~ + F l ( R , ~ , T ,  ...) i,+-F2(R,~,T, ...)by (34) 

where Fl and P2 are arbitrary functions. Substituting (34) into (31) and (32), one 
gets the same equation: 

which is the governing equation for the Rossby waves. 

q.n = 0 on the side wall: 

a(V2Po)/a~+ (2/cr) aPo/ae = 0, (35) 

One of the boundary conditions for this equation follows from the restriction 

x (i, + ak) = 0. (36) 

(37) 

At zero order in a we have 
[Q,o * i,I,=a = 0, 

which we already know from (5 ) .  Hence, at first order in a, we have 
a 

X(A,, Qmo. 4 +Amo Qmo. k) + 0 0  - 1, Qrn0.ir + A , o ~  - Q,o s i r ]  = 0. 
ad0 r=a 

(38) 
m 

Now [Qmo. ir] = 0 from (37), and since Qo is independent of x we must have 

and 

Hence 

Similarly we can show that the boundary condition at the free surface is 

P0lr-a = 0. (41) 

(42) 

(43)Y (44) 

Hence, letting Po = Po, eim8 eiW, the boundary-value problem for Po, is 

V2Poo + (2m/crs) Po, = 0, 

Poo(r = a) = Poo(r = b )  = 0. where 

order 2m, the solution of which in terms of r is 
Under the transformation r = c2 equation (42) becomes Bessel's equation of 

Poo = CJz,( (8mrlsc)a) + DY2,( (8mr/sc)*), 

CJ&( ( SWMZ/SC)*) + DY,((  S W ~ S G ) ~ )  = 0 

CJsm( ( ~ w L ~ / s c ) * )  + DYz,( ( 8 m b / ~ ) * )  = 0. 

(46) 

(46) 

(47) 

where from (43) and (44) 

and 

42 F L Y  72 
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Hence 
D = - [J,,(P ma/sc)g)/y,,((8mb/sc)~)l c (48) 

and the frequency equation is 

Jzm( (8malsc)i) yZm( (8mb/sc)*) - Jam( (8rnb/sc)4).&,( (8ma/sa)*) = 0. (49) 

In table 1 we give several representative values of s1 (along with some corre- 
sponding values of h taken from Stewartson's tables) for various combinations 
of cia and Via2, where a is the cavity radius, 2c the cavity height and b the radius 
of the free surface of the liquid. 

m = l  m = 2  
I 

A 
\ -  

3 0  0.101 0.9957 3 0 0.093 
3 0.16 0.033 0.976 3 0.16 0.017 
3 0.25 0.022 0.933 3 0.25 0.00448 
3 0.30 0.017 0.909 
3 0.50 0.006 0.792 

c/a ba/aa 81 h c/a b21a2 81 

TABLE 1 

and thus 

The interactions 
We now use (6) and (51) in (21) with the hope that the integral in the exponential 
will be complex, thus providing the frequency shift indicated by figures 2 and 3. 
In  that integral, we have 

(52)  

(53) 

Q&. Qmo x (V x Qo) = QZo * Qmo x kV2P,, 

Q& - 0 0  x (V x Qmo) = +QZ. (k x Vpo) x (V x Qmo) 

which integrates to zero over the voIume of Iiquid ! Similarly 

integrates to zero over the volume of liquid. Hence 

A,, = am,($, . . .) exp (ih,t) + iy eirtl R x w . QgdV/( iy  - ih,) I Q,. Q$ d P  (54) 

and t o  second order in a the effect we are searching for via nonlinear interactions 
is not present. 
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Even if the integraIs had not yielded zero, these interaction effects would have 
been of second order in a in time and hence would have been small. For that 
reason there is no need t o  carry the analysis to third order in a even if the integrals 
are then non-zero. The only hope for the Rossby-mode idea, it  seems, is to allow 
the angle a to vary. On physical grounds, however, it is difficult to see how this 
variation in a could affect the wave motion to such an extent that the integrals 
would not yield zero. 

The modified inertial modes : experimental veri$cation 

Having dismissed the Rossby-wave effect, we now consider the effect on the 
inertial modes of the non-zero value of a. Returning to (29), which involves the 
modification d, to d, we have 

[Qmo. i, - r a(Qmo. k)/azl,=, = dl[a(Qm0. k)/adolS=,- 

Since this must hold for all r ,  we let r = a, for then the f i s t  term vanishes and 
we have 

d, = - a[a(Q,o. k)/az],=, [a(Q,o. k)/adOl-l. (55) 

d, = -ado/2c, (56) 

Using (6) and (7) we can reduce (55) to 

where do = (2j+ 1) 7r/2c. Hence the value of d to be used in determining the 
inertial wave frequency from (8) is 

d = do+ad, = d0(l-aa/2c) = (2j+1)7r/2c 

[c/a(2j + I)] = [c/a(2j + I)]/( 1 - aa/2c). 

(57) 

(58) 

and the value of c/a(2j + 1) to use in Stewartson's tables is 

Consider now figure 2, where we show two different growth-rate curves for 
a partially filled cavity. The growth-rate curve peaking at  a gyroscope frequency 
of 0.0565 was generated by letting the amplitude of the gyroscopio motion 
increase from the sleeping position. The growth-rate curve peaking at  a gyroscope 
frequency of 0-064 was generated by giving the gyroscopic motion an initid 
amplitude of about 3". Let us determine whether (58) can predict the observed 
value of 0-064. From the figure, a = 1-25in. 2c = 7.48in. and, for j = I, 
[c/a(2j+ 1)IaE0 = 0-997. Hence, when a = 3" = 0-052rad, 

[c/a(2j + l)]= = 0.997/( I - UO,/~C) = 1.006. 

From Stewartson's tables, this gives an inertial wave frequency of 0.065, a value 
only slightly exceeding the experimental value of 0.064. Note that the shifts 
in the peaks do not seem to be viscosity dependent. 

Consider now figure 3, where we show two different growth-rate curves for 
a completely filled cavity. Here the peak in the curve generated by letting the 
amplitude grow from the sleeping position occurs at  a gyroscope frequency of 
0.049. The growth-rate curve peaking a t  a gyroscope frequency of 0.053 was 
generated by giving the gyroscope an initial amplitude of about 3'. Here, 
a = 1.24in., 2c = 7.817in. and [c/a(2j+ = 1.0507. As before, using 

42-2 
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a = 0.052rad, we have [c/a(2j+ 1)Ia = 1.0507/(1- 0.0082) = 1-059. Using 
Stewartson’s tables, we get an inertial wave frequency of 0,054, again only 
slightly exceeding the experimental value. 

3. Conclusions 
The inertial wave eigenfrequencies of spinning liquids in cylinders depend 

very critically upon the geometry of the container. When the liquid is not 
spinning about the axis of the cylindrical cavity, it  ‘sees’ a different geometry 
with a consequent change (given by a remarkably simple expression) in the wave 
frequency. The Rossby modes excited by the ‘geometry’ do not, to second order 
in the small amplitude of the gyroscope motion, have any effect on the inertial 
modes. 
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